Reelin Mobilizes a VAMP7-Dependent Synaptic Vesicle Pool and Selectively Augments Spontaneous Neurotransmission
نویسندگان
چکیده
Reelin is a glycoprotein that is critical for proper layering of neocortex during development as well as dynamic regulation of glutamatergic postsynaptic signaling in mature synapses. Here, we show that Reelin also acts presynaptically, resulting in robust rapid enhancement of spontaneous neurotransmitter release without affecting properties of evoked neurotransmission. This effect of Reelin requires a modest but significant increase in presynaptic Ca(2+) initiated via ApoER2 signaling. The specificity of Reelin action on spontaneous neurotransmitter release is encoded at the level of vesicular SNARE machinery as it requires VAMP7 and SNAP-25 but not synaptobrevin2, VAMP4, or vti1a. These results uncover a presynaptic regulatory pathway that utilizes the heterogeneity of synaptic vesicle-associated SNAREs and selectively augments action potential-independent neurotransmission.
منابع مشابه
Selective molecular impairment of spontaneous neurotransmission modulates synaptic efficacy
Recent studies suggest that stimulus-evoked and spontaneous neurotransmitter release processes are mechanistically distinct. Here we targeted the non-canonical synaptic vesicle SNAREs Vps10p-tail-interactor-1a (vti1a) and vesicle-associated membrane protein 7 (VAMP7) to specifically inhibit spontaneous release events and probe whether these events signal independently of evoked release to the p...
متن کاملVti1a Identifies a Vesicle Pool that Preferentially Recycles at Rest and Maintains Spontaneous Neurotransmission
Recent studies suggest that synaptic vesicles (SVs) giving rise to spontaneous neurotransmission are distinct from those that carry out evoked release. However, the molecular basis of this dichotomy remains unclear. Here, we focused on two noncanonical SNARE molecules, Vps10p-tail-interactor-1a (vti1a) and VAMP7, previously shown to reside on SVs. Using simultaneous multicolor imaging at indivi...
متن کاملAn Isolated Pool of Vesicles Recycles at Rest and Drives Spontaneous Neurotransmission
Spontaneous synaptic vesicle fusion is a common property of all synapses. To trace the origin of spontaneously fused vesicles in hippocampal synapses, we tagged vesicles with fluorescent styryl dyes, antibodies against synaptotagmin-1, or horseradish peroxidase. We could show that synaptic vesicles recycle at rest, and after spontaneous exo-endocytosis, they populate a reluctantly releasable po...
متن کاملv-SNARE Composition Distinguishes Synaptic Vesicle Pools
Synaptic vesicles belong to two distinct pools, a recycling pool responsible for the evoked release of neurotransmitter and a resting pool unresponsive to stimulation. The uniform appearance of synaptic vesicles has suggested that differences in location or cytoskeletal association account for these differences in function. We now find that the v-SNARE tetanus toxin-insensitive vesicle-associat...
متن کاملAcute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission.
Synapses maintain synchronous, asynchronous, and spontaneous forms of neurotransmission that are distinguished by their Ca(2+) dependence and time course. Despite recent advances in our understanding of the mechanisms that underlie these three forms of release, it remains unclear whether they originate from the same vesicle population or arise from distinct vesicle pools with diverse propensiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 80 شماره
صفحات -
تاریخ انتشار 2013